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ABSTRACT

The paper presents a novel computer algorithm
allowing a global stability analysis of any nenlin
ear microwave circuit to be carried out in a gen
eral-purpose CAD environment. This is obtained
through a systematic application of bifurcation
theory in a way compatible with the frequency-do
main description of the linear subnetwork.

INTRODUCTION

A global stability analysis should complement the
design of any active or nonlinear microwave circuit,
since it is the only way to provide and in-depth
knowledge of circuit behavior not to be confined to
a small neighborhood of the nominal operating point.
This kind of analysis can be produced in a system
atic way making use of the principles of bifurca
tion theory {e.g., 1, 2}. For a parametrized sys
tem, solution paths in the state space bifurcate at
those parameter values for which system stability
undergoes an abrupt qualitative change, that is,
the real part of one (at least) natural freguency
changes sign. The topological and the stability-ex
change properties of bifurcations have been studied
extensively in the mathematical literature, under
broad assumptions that certainly warrant the appli
cation of the qualitative conclusions to microwavg
circuits {1}. However, classic bifurcation theory
is based on a time-domain description of the system
being considered, which would be both impractical
and inaccurate for microwave circuits.

A major contribution of this paper is to intro
duce a general algorithm for the detection of bifur
cations of a parametrized microwave circuit, which
is based on a frequency—domain description of the
linear part of the network, and can thus take profit
of advanced techniques for passive circuit modeling
{3, 4}. The cornerstones are the piecewise harmonic-
balance technique {5}, and a recently proposed ap
proach to local stability analysis {6, 7}. To COE
plete the global stability analysis, the algorithm
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is coupled to a standard continuation method {8}.
The entire procedure is implemented in a general-
purpose CAD enviromment, which means no limita
tions on the complexity of both the passive subnet
work and the active device models.

Global stability analysis has a vast potential
for providing insight and control over some very
important aspects of circuit behavior that have
been dealt with so far by empirical methods only.
We mention as examples the generation of spurious
tones in microwave oscillators and the general prob
lem of including stability requirements among the
objectives of nonlinear circuit design. As a pre
liminary application the global stability analysis
of a regenerative frequency divider is presented
in this paper.

DESCRIPTION OF THE ALGORITHM

Let us consider a nonlinear microwave circuit
continuously dependent on a parameter p. According
to the piecewise harmonic-balance technique {5},
the electrical regime is described in terms of a
state vector X whose elements are harmonics of the
time-dependent state variables. The linear subnet
work is analyzed in the freguency domain. Periodic
steady states are defined by the solutions of a non
linear system of the form E(X) =0, where the el
ements of E are harmonic-balance errors {s}. a per
turbation analysis of the steady state {6, 7} leads
to the characteristic equation A(s) =0 for the natu
ral frequencies s =0+ jw. A general straightforward
algorithm is available {7} for computing A(s),
given an arbitrary network topology and a periodic
steady state. The properties of the function A(s)
are discussed in detail in {6}.

According to the definition, the existence of a
bifurcation at p =pp requires the following set of
mathematical conditions to be satisfied:
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E(X ,p) =0

-—- B (1)
A(Jw , X, DB) =0
do
- 0 (2)
dp(DB)

where the dependence on p has been explicitly indi

cated. We
odic solutions of period T, = 2m/w,. A periodic
steady state is symbolically denoted by kSm {9},
where k is the number of unstable natural fre

first consider the bifurcations of peri

quencies and m indicates a period mTe (1 under
stood). Then the following fundamental types of
bifurcations are possible {1, 9}:

1) D-type
A simple real natural frequency crosses the ori

(double-point bifurcation)

gin at p =pg, SO that (1) are satisfied with
w=0. The exchange of stability is defined by
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where the states appearing first (second) on
both sides of the arrows correspond to each
other.
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Special case of D-type (regular turning point)
Same as 1), but the creation or annihilation of
two periodic states takes place at p =pg. The
exchange of stability is defined by
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where ¢ denotes the absence of solutions.

I-type (period-doubling bifurcation)

Two simple complex~conjugate natural frequencies
of the form ¢ ijwo/Z cross the imaginary axis at
o =pg, so that (1) are satisfied with w=*# We/2.
The exchange of stability is defined by

s + 2 82 . 5
x (5)

> k1

Hopf-type (spurious-exciting bifurcation)

Two simple complex-conjugate natural frequencies
cross the imaginary axis at p =ppg, so that (1)
are satisfied with 0 < !w| < Wg/2. The exchange
of stability is defined by

+ k(INVARIANT CLOSED CURVE) , (6)

sz S
k© 7 k22
where the invariant closed curve represents a
quasi-periodic regime which is stable for k=0,
unstable otherwise.

Since A(0) and A(jwy,/2) are real quantities {6},
(1) is always well conditioned from a mathematical
viewpoint, that is, the number of real equations is
equal to the number of real unknowns. This also ex
plains why 1) -3) represent the fundamental bifur

cations: the existence of such bifurcations is
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mathematically possible in generic situations. On
the other hand, more complex kinds of bifurcations
requiring additional constraints to be imposed on
(e.g., w=wp/4
period-quadrupling bifurcation) will only

the same variables appearing in (1)
for a

exist under exceptional circumstances.

To solve the
solved for X(p)
Then D-type and

system (1), E(X , p) =0 is first
by a continuation method {10, 11}.
I-type bifurcations are found by
solving A(0) =0 and 4(jwo/2) =0 in the one-dimen
sional manifold E(p). Hopf bifurcations are found
by solving A(jw) =0 in the two-dimensional manifold
[w ., X(0)] . At each solution the condition (2) is
easily checked by Nyquist analysis {6}.

The whole procedure is then repeated for the bi
furcating branches. Since the stability of the cir
cuit does not change, by definition, along a branch
not containing bifurcations, a global stability
picture for the circuit being considered is readily
obtained in this way. Note that this implies that
the stability of an Znfinite number of possible
states becomes known by a finite number of oper
ations.

As a final point, we shall briefly discuss the
bifurcations of static solutions of the circuit
equations. In this case the fundamental bifurca
tions are the D- and the Hopf-type {1, 2}. For
microwave applications the latter plays an essen
tial role in oscillator design and parasitic bias-
circuit oscillations control in general microwave
subsystems. The former may be of interest in rela
tion with the design of DC-stable bias networks.

The conditions defining a bifurcation of a
static solution are obviously much simpler than
(1}. If Xo is the DC (and the only nonzero) compo
nent of the state vector at the bifurcation, we
must have

B, pg) =0
(7)
det |1 - S(w , S , X,
[—n s( DB) _D(w X
do
a-%DB) z 0

(8)
P

where $ is the conventional scattering matrix of
the linear subnetwork (which may depend on the par
ameter p), and Sp is the small-signal scattering
matrix of the nonlinear subnetwork describing its
linearized behavior around the bias point defined
by Xo (1, represents an identity matrix of order
equal to the number of subnetwork ports).

The exchange of stability at the bifurcation is
defined by the following equations {1, 2}.

1) For the D-type bifurcation (assuming that a
simple real eigenvalue changes sign):
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2) For the Hopf bifurcation:

(e} o
s % kS * 2ks . (12)

In (9) - (12) the superscript « denotes a DC state.

In all cases, the number of equations in (7)
equals the number of real unknowns, so that the sys
tem is generally solvable from the mathematical
viewpoint. The solution is now simplified by the
fact that the second of egs. (7) simply states that
one of the eigenvalues (in a conventional sense) of
the matrix S Sy must be equal to 1 at the bifurca
tion. Thus a convenient way of solving (7) is now
as follows: i) the first of (7) is solved for §o(p)
by a continuation method; ii) to find D-type bifur
cations, the one-dimensional manifold X, (p) is
searched for the points pp at which one eigenvalue
of § Sy becomes unity: iii) to find Hopf-type bi
furcations the two-dimensional manifold

[0, X5(0)]

at which one eigenvalue of S S, becomes unity. To
verify (8) we only have to check that the magnitude
of the above mentioned eigenvalue is < 1 at pg - &p

is searched for those points (w , pp)

and > 1 at pg + Sp (S§p << pg) . or conversely.

GLOBAL STABILITY ANALYSIS OF AN ACTIVE FREQUENCY
DIVIDER

A circuit topology similar to the one described
in {12} was adopted; the details of the device model
are shown in fig. 1.
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Fig. 1 - FET model used in the simulation
(IDSS = 40mA, Cig = 0.42pF, Vp = -1.91V)
211 elements shown are nonlinear.

This circuit was first designed by a general-
purpose nonlinear optimization program {13} for in
ouT =5 GHz,
and for the following set of specifications:

- available input power at 10 GHz =6 mW

put and output frequencies fiy=10 GHz, f

- conversion gain > 0 dB

- spectral purity of 5 GHz output signal > 16 dB
- input return loss at 10 GHz > 10 dB.

4 harmonics of the output frequency were used in
the design.

A global stability analysis of the circuit thus
obtained was then carried out. A one-dimensional
parametrization with p = Pyy (available power of
the 10 GHz pump expressed i1n mW) was adopted. The
results of this analysis are presented in fig. 2,
where the quantity

m= lxl] = el (13)

1s plotted against p =Py (|| I‘ denotes the norm).
The bias point X, was kept fixed throughout the
calculation. The range of interest is 0 £ p £ 10.

The "multiplier branch" (fig. 2) was first deter
mined by a continuation method starting from p = 0.
A local stability analysis of the bias point chosen
(Vgo = -1.9V, Vpg = 6V) revealed that the circuit
is DC stable; thus the multiplier branch i1s stable
in the neighborhood of the origin. Only one sol
ution of the system (1) was found on the multipli
er branch within the range of interest: an I-type
bifurcation at p =pp = 5.1 (point I). Thus the
multiplier branch is stable for p <py and unstable
for p >pg.

Starting at p =py, the "divider branch"” was then
determined by a continuation method. Since this
branch starts with p <pg, the bifurcation at point
T is subceritical {1}, 1.e., is described by (5)
with the arrow pointing from right to left, k = 1
and the "minus" sign of the right-hand side. Thus
the divider branch is unstable in the vicinity of
the bifurcation. Only one solution of the system
(1) was found on the divider branch within the
range of interest: a D-type bifurcation correspond
ing to the regular turning point D. At point D this
branch becomes stable, which can be established by
performing a local stability analysis anywhere be
vond the turning point (this analysis is required
to show that the bifurcation may be described by
(4) with k =0). In particular, the nominal operat
ing point A is found to be stable. The divider
branch is unstable with one positive real natural
frequency between I and D. The unstable branch I D
determines the existence of a hysteresis cycle
around threshold.

Note that each point of the divider branch is
actually representative of two states (ec.g., A and
A 1n fig. 2) only differing in the sign of the odd
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Fig. 2 - Bifurcation diagram of a regenerative frequency divider

harmonics, and thus associated with the same value
of M.
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