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ABSTRACT

The paper presents a novel computer algorithm

allowing a global stability analysis of any nonlin

ear microwave circuit to be carried out in a gen—
eral-purpose CAD environment. This is obtained

through a systematic application of bifurcation

theory in a way compatible with the frequency–do —
main description of the linear subnetwork.

INTRODUCTION

A global stability analysis should complement the

design of any active or nonlinear microwave circuit,

since it is the only way to provide and in-depth

knowledge of circuit behavior not to be confined to

a small neighborhood of the nominal operating point.

This kind of analysis can be produced in a system —
atic way making use of the principles of bifurca —
tion theory {e.g., I, z]. For a parametrized sY~

tern, solution paths in the state space bifurcate at

those parameter values for which system stability

undergoes an abrupt qualitative change, that is,

the real part of one (at least) natural frequency

changes sign. The topological and the stability-ex

change properties of bifurcations have been studied

extensively In the mathematical literature, under

broad assumptions that certainly warrant the appl>

cation of the qualitative conclusions to microwave

circuits {l}. However, classic bifurcation theory

is based on a tim~-domain description of the system

being considered, which would be both impractical

and Inaccurate for microwave circuits.

A major contribution of this paper is to intro —

duce a general algorithm for the detection of bifur —

cations of a parametrized microwave circuit, which

is based on a frequency-domain description of the

linear part of the network, and can thus take profit

of advanced techniques for passive circuit modeling

{3, 4}. The cornerstones are the piecewise harmonic-

balance technique {5], and a recently proposed aQ

preach to ~Or?(21 stability analysis {6, 7}. To com—

plete the global stability analysis, the algorithm

is coupled to a standard continuation method {8}.

The entire procedure is implemented in a general-

purpose CAD environment, which means no limits —

tions on the complexity of both the passive subnet .—

work and the active device models.

Global stability analysls has a vast potential

for provld~nq insight and control over some very

important aspects of circuit behavior that have

been dealt with so far by empirical methods only.

We mention as examples the generation of spurious

tones in microwave oscillators and the general prob

lem of including stability requirements among the–

objectives of nonlinear circuit design. As a pre —

liminary application the global stability analysis

of a regenerative frequency divider IS presented

in this paper.

DESCRIPTION OF THE ALGORITHM

Let us consider a nonlinear microwave circuit

continuously dependent on a parameter p. According

to the piecewise harmonic-balance technique {5},

the electrical regime is described in terms of a

state vector X whose elements are harmonics of the—

t~me-dependent state variables. The linear subnet —.

work is analyzed in the frequency domain. Periodic

steady states are defined by the solutions of a nc,n

linear system of the form E(X) =0, where the el

—

— — —

ements of E are harmonic-balance errors {5}. A per

turbat~on ;nalysis of the steady state [6, 7} lea~s

to the characteristic equation A(s) =0 for the natu —

ral frequencies s = rs + jm. A general straightforward

algorithm is available {7} for computing A(s),

given an arbitrary network topology and a periodic

steady state. The properties of the function A(s)

are discussed in detail in {6].

According to the definition, the existence of a

bifurcation at p =PB requires the following set of

mathematical conditions to be satisfied:

689

0149-645 X18710000-0689 $01.00 Q 1987 IEEE 1987 IEEE MTT-S Digest



{

E(x , PB) = O— —

A(jo, ~,p B)=O

$(PB) = o

(1)

(2)

where the dependence on P has been explicitly indi —

cated. We first consider the bifurcations of peri —

odic solutions of period T o = 2n/wo. A periodic

steady state is symbolically denoted by kSm {9},

where k is the number of unstable natural fre —

quencies and m indicates a period mTo (1 under —

stood) . Then the followlng fundamental types of

bifurcations are possible {1, 9}:

1) D-t~e (double–point bifurcation)

A simple real natural frequency crosses the ori —

gin at p =pBr so that (1) are satisf~ed with

&l=(). The exchange of stability is defined by

s+ <-s+
k kf 1

S+ks,
k+ 1 (3)

where the states appearing first (second) on

both sides of the arrows correspond to each

other.

1s) Special case of D-type (regular turning point)

Same as 1), but the creation or annihilation of

two periodic states takes place at p =PB. The

exchange of stabil~ty is defined by

CJ+ks, (4)

2)

3)

where $ denotes the absence of solutions.

I-type (period-doubling bifurcation)

Two simple complex-conjugate natural frequencies

of the form o t joo/2 cross the imaginary axis at

P ‘PB, so that (1) are satisfied with LIJ=t uo/2.

The exchange of stability is defined by

+
s + 2ks2 .

ks + k~l

Hopf–type (spurious-exciting bifurcation)

(5)

Two simple complex-conjugate natural frequencies

cross the imaginary axis at p .pBr so that (1)

are satisfied with O < Iwl < 0./2. The exchange

of stability is defined by

S$
k

s + k(INVARIAN1’ CLOSED CURVE) ,
kf2

(6)

where the invariant closed curve represents a

quasi-periodic regime which is stable for k=O,

unstable otherwise.

Since A(0) and A(jwo/2) are real quantities {6},

(1) is always well conditioned from a mathematical

viewpoint, that is, the number of real equations is

equal to the numkr of real unknowns. This also ex

plains why 1) –3) represent the jtutdamenta2 bifur —

cations: the existence of such bifurcations is

mathematically possible in generic situations. On

the other hand, more complex kinds of bifurcations

requiring additional constraints to be imposed on

the same var~ables appearing in (1) (e.g., w =mo/4

for a period-quadrupling bifurcation) will only

exist under exceptional circumstances.

To solve the system (l), E(X , p) =0 is first

solved for ~(p) by a continu;t;on method {10, 11}.

Then D-type and I-type bifurcations are found by

solving A(0) = O and A(jmo/2) = O in the one-dimen —

sional manifold X(P). Hopf bifurcations are found—

by solving A(jm) =0 in the two-dimensional manifold

[w,~(P)] . At each solution the condition (2) is

easily checked by Nyquist analysis {6}.

The whole procedure is then repeated for the bl—

furcating branches. Since the stability of the cir

cuit does not change, by definition, along a bran~h

not containing bifurcations, a global stability

picture for the circuit being considered is readily

obtained in this way. Note that this implies that

the stability of an infinite number of possible

states becomes known by a “finite number of oper —

ations .

As a final point, we shall briefly discuss the

bifurcations of static solutions of the circuit

equations. In this case the fundamental bifurca

tions are the D- and the Hopf-type {1, 2}. For–

microwave applications the latter plays an essen —

tial role in oscillator design and parasitic bias-

circuit oscillations control in general microwave

subsystems . The former may be of interest in rela —

tion with the design of DC-stable bias networks.

The conditions defining a bifurcation of a

static solution are obviously much simpler than

(1). If ~. is the DC (and the only nOnZerO) COmpQ

nent of the state vector at the bifurcation, we

must have

I
E (X ,PB)=O
m-o

[

(7)

det 1 - S(IJ , PB) SD(M , x PB) =0
n— -0’

I$(PB)= o (8)

where S is the conventional scattering matrix of—

the linear subnetwork (which may depend on the par

ameter p) ,

—
and ~ is the small-signal scattering

matrix of the nonlinear subnetwork describing its

linearized behavior around the bxas point defined

by X. (~ represents an identity matrix of order
—

equal to the number of subnetwork ports) .

The exchange of stability at the bifurcation is

def~ned by the following equations {1, 2}.

1) For the D-type bifurcation (assuming that a

simple real eigenvalue changes sign) :
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or

‘+ Sw + 2ksw .
ks + kfl

(lo)

1s) For the regular turning point

Ckflsm+ksm . (11)

2) For the Hopf bifurcation:

“+ co
s + 2ks .

k + kf2s
(12)

In (9) - (12) the superscript M denotes a DC state.

In all cases, the number of equations in (7)

equals the number of real unknowns, so that the sys—

tern j.s generally solvable from the mathematical

viewpoint. The solution is now simplified by the

fact that the second of eqs. (7) simply states that

one of the eigenvalues (in a conventional sense) of

the matrix S & must be equal to 1 at the bifurcfi—

tion. Thus a convenient way of solving (7) is now

as follows: i) the first of (7) is solved for ~(p)

by a continuation method; ii) to find D-type bifur —

cations, the one–dimensional manifold ~o(p) is

searched for the points PB at which one eigenvalue

of S SD becomes unity: iii) to find Hopf-type bi—

furcations the two-dimensional manifold

[u ,&(P)] is searched for those points (U , PB)

at which one eigenvalue of S ~D becomes unity. To—

verify (8) we only have to check that the magnitude

of the above mentioned eigenvalue is < 1 at PB - 6P

and > 1 at PB + 6P (6o << PB) , OK conversely.

GLOBAL STABILITY ANALYSIS OF AN ACTIVE FREQUENCY

DIVIDER

A circuit topology similar to the one described

in {12} was adopted; the details of the device model

are shown in fig. 1.

‘B

I CF I

Fig. 1. – FET model used in the simulation

(IDSS = 40mA, CIO = 0.42PFJ Vp = -1.91V)

All elements shown are nonlinear.

This circuit was first designed by a general-

purpose nonlinear optimization program {13} fOr ~~

put and output frequencies fIN= 10 GHZ, fOUT .5GHZ,

and for the following set of specifications:

available input power at 10 GHz =6 mW

– conversion gain > 0 dB

- spectral purity of 5 GHz output signal > 16 dB

input return loss at 10 GHz > 10 dB.

4 harmonics of the output frequency were used in

the design.

A global stability analysis of the circuit thus

obtained was then carried out. A one-dimens~onal

parametrization with o =PIN (available power of

the 10 GHz pump expressed in mW) was adopted. The

results of this .snalysis are presented in fig. 2,

where the quantity

M= (llX\l - Il&ll)l’z (12,)
—

IS plotted against p =PIN (1 I I I denotes the nOrrl) .

The bias point X. was kept fixed throughout the
—

calculation. The range of interest is O S P S 10.

The “multiplier branch” (fig. 2) was first det.e~

mined by a continuation method starting from P = O.

A local stability analysis of the bias point chosen

(vGo = -1.9V, VL)O = 6v) revealed that the circuit

is DC stable; thus the multiplier branch IS stable

in the neighborhood of the origin. Only one sol .

ution of the system (1) was found on the multipli. —-

er branch within the range of interest: an I–type

bifurcation at p =PI z 5.1 (point I). ‘L’hus the

multiplier branch is stable for P <Or and unstable

for p>pI.

starting at p =plr the “divider branch” was then

determined by a continuation method. Since this

branch starts with p <PI, the bifurcation at point

I is suberitieat {1}, I.e., is d.es’cr~bed by (5)

with the arrow pointing from right to left, k = 1

and the “minus” sign of the right-hand side. Thus

the divider branch is unstable in the vicinity of

the bifurcation. Only one solution of the system

(1) was found on the divider branch within the

range of Interest: a D-type b~furcation correspond —

ing to the regular turning point D. At point D this

branch becomes stsble, which can be established by

performing a local stability analysis anywhere be.-

yond the turning point (this analysis is requ~red

to show that the bifurcation may be described by

(4) with k= O). In particular, the nominal operat .-

ing point A is found to be stable. The divider

branch is unstable with one positive real naturaL

frequency between I and D. The unstable branch I D

determines the existence of a hysteresis cycle

around threshold.

Note that each point of the divider branch is

actually representative of two states (e.g. , A a.~d

K In fig. 2) only differ~ng in the sign of the odd
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Fig. 2 - Bifurcation diagram of a regenerative frequency d%vider

harmonics, and thus associated with the same value

of M.
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